Ancient Greeks held differing views on the function of the brain. Hippocrates believed the brain to be the seat of intelligence, but Aristotle held that the brain was a cooling mechanism for the blood, while the heart was the seat of intelligence. Aristotle reasoned that humans are more rational than the beasts because they have a proportionally larger brain to cool their hot-bloodedness (Bear, 2001).
During the Roman Empire, the anatomist Galen dissected the brains of sheep. He concluded that since the cerebellum was hard to the touch, it must control the muscles, while since the cerebrum was soft, it must be where the senses were processed. Galen further theorized that the brain functioned by movement of fluids through the ventricles (Bear, 2001).
In the Age of Reason, René Descartes espoused a fluid mechanical view of the brain similar to Galen's theories. However, Descartes thought that although this explanation was adequate to explain the brain functions of animals, the higher mental functions of humans were accomplished by the soul. This theoretical separation of the mind and brain became known as the mind-body problem (Bear, 2001).
In the mid-1600s, however, great progress in the anatomy of the brain was achieved with the works of English anatomist Thomas Willis and Flemish anatomist Vesalius. They dispelled many of the wrong notions of Galen and Descartes and discovered many facts about the macro structure of the brain of animals and humans.
In the 1700s, Luigi Galvani showed that electrically stimulating the sciatic nerve of a dissected frog caused movement of the attached muscle. His experiments led scientists away from the fluid mechanical theory of the brain and toward an electrical theory. Galvani's work led, in the 19th century, to the development of research in bioelectricity and to the discovery of the membrane potential, action potential, etc., by researchers such as Emil du Bois-Reymond.
The scientists of the 1800s debated whether areas of the brain corresponded to specific functions or if the brain functioned as a whole (the "aggregate field theory"). Jean Pierre Flourens championed the aggregate field theory in opposition to the pseudoscience of phrenology, founded by Franz Joseph Gall. However, the work of Paul Pierre Broca, Karl Wernicke, and Korbinian Brodmann eventually helped show that areas of the brain had specific functions, though some functions were repeated, an idea known as parallel distributed processing (Kandel, 2001).
As the 20th century approached, the anatomical works of Santiago Ramon y Cajal and Camillo Golgi laid the foundation for the study of individual neurons in the brain. Charles Scott Sherrington and Edgar Douglas Adrian furthered the study of neurons with the new techniques of electrodes and the electroencephalogram (EEG). Neurotransmitters were discovered and investigated by a number of scientists, including Otto Loewi, Henry Hallett Dale, Arvid Carlsson and many others. Later techniques, such as brain imaging allowed scientists to study the brain in living humans and animals in ways that their predecessors could not.